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ABSTRACT 

Let G be an Abelian group written additively, B a finite subset of G, and let t 
be a positive integer. For t _--< 1B ], let B, denote the set of sums of t distinct 
elements over B. Furthermore, let K be a subgroup of G and let tr denote the 
canonical homomorphism a : G--~ G/K. Write B, (rood B,) for B,a and write 
Bt (rood K) for Ba. The following addition theorem in groups is proved. Let G 
be an Abelian group with no 2-torsion and let B a be finite subset of G. If t is 
a positive integer such that t < [ B] then [ B~ (mod K) [ => [ B (mod K) [ for 
any finite subgroup K of G. 

O. Introduction 

Let G be an Abelian group  writ ten additively, B a finite nonempty  subset o f  

G,  and  t a positive integer. Fo r  1 < t < [B I we denote by B t the set o f  sums 

o f  t d i s t inc t  elements over  B.  Thus  if B = {bl,  " - ' ,  bk}, then B, = {b~l + ... + b,t [ 

1 < i 1 < ... < it < k}. Also, for  clarity we will sometimes write (B)t instead 

o f  B t to avoid confusion with sets having a subscript. 

We are concerned with the following problem.  Wha t  is the relation between 

I BI and IB, l? More  generally, let K be a subgroup of  G and let tr denote  the 

canonical  h o m o m o r p h i s m  a: G ~ G / K .  What  is the relation between I Ba] and 

[B: l? To exhibit the role of  K we shall write B t ( m o d K  ) for  B :  and B ( m o d K )  

for  Btr in G / K .  H. B. Mann  and J. E. Olson (cf. L e m m a  4 in 15]) proved  in 

G = Zp that  [B, I >_ IB I if  t < IB[. The au thor  (cf. [1], Th. 2.7 and also [3]) 

proved  that  i f  ]B[ > 2,  then IR21 --> 1BI i~  B x + N where x ~ G  and N is 

an e lementary Abelian 2-group. The study of  sums of  length t was mot iva ted  

by the p rob lem o f  est imating the size o f  sums o f  sets in ari thmetic progression.  
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The reader should consult [2], [3], and [5] to see how knowledge of lB, I results 

in the best possible estimates or nearly best possible estimates of  certain sums 

of  sets in arithmetic progression. 

Our purpose is to prove: 

THEOREM 1. Let G be an Abelian group with no 2-torsion and let B be 

a finite subset of G. I f  t is a positive integer such that t < l B [ ,  then 

]B,(modK)l >= ]B(modK)l for any finite subgroup K of G. 

The proof of  Theorem 1 is carried out by employing the fundamental addition 

theorems in groups: Kneser's theorem (cf. [6], Th. 1.5) which is a generalization 

of the Cauchy-Davenport theorem (cf. [6], Corollary 1.2.3), and Kemperman's 

structure theorem (cf. [4], Th. 5.1) which is a generalization of Vosper's theorem 

(cf. [6], Th. 1.3). Through the course of the paper we refer to these theorems by 

their name only. Also, we follow the notation and terminology in Mann's book 

[6] and Kemperman's paper [4]. 

Before we enter into the details of the proof of Theorem 1, we define two 

further concepts. A finite subset C of G is said to be periodic, if there exists a 

nontrivial subgroup F of G such that C + F = C, i.e., C is a union of F-cosets. 

Otherwise we say C is aperiodic. A finite set A in G (possibly not Abelian) of 

size ] A[ > 2 is in arithmetic progression on the right with difference d (d # 0) 

provided that A is in the form A = {ao, ao + d, . . . ,  ao + sd} where s is a positive 

integer and I AI l<d>l where (d )  is the cyclic group generated by d. A similar 

definition can be dualized for the left. Note, a set with exactly two elements can 

always be regarded as being in arithmetic progression on the right or the left. 

1. Some preliminary lemmas 

We require the following lemmas. Lemma 1.1, Lemma 1.2, and Lemma 1.3 

are essentially due to Mann and Olson [5]. 

LEMMA 1.1. Let G be a group (possibly not Abelian) with no 2-torsion 

and let B be a finite subset of G with ]B I > 6. Then B contains a subset R of 

size ]R I = 3 which is not in arithmetic progression on the right. 

PROOF. For x ~ G, x + B is in arithmetic progression on the right if and only 

if B is in progression on the right. Thus, without loss of generality we may assume 
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0 ~ B  since we may replace B by - b  + B where b ~ B .  Let B' = {O, bz, . . . ,b6) 

be a subset o f  B.  We shall select three elements r t ,  r 2 and r 3 f rom B'  to form 

R = {r l , r2 , r3}  so that R is not  in progression. We choose rl  = 0,  r 2 = b2, 

and pick r 3 distinct so that the following conditions hold:  

i) ra # - r2 

ii) r a # 2r2 

iii) 2r3 # r2. 

The above selection o f  r a can be accomplished because if B '  contains (say) b3 = 

- r z  and b4 = 2r2,  we may choose r3 which differs f rom b3 and ba,  since 

b~ and b 6 remain. Thus, conditions (i) and (ii) are satisfied if r a = bs or r a = b6. 

Fur thermore,  either r a = b5 or r a = b 6 must  satisfy (iii) because if both  fail 

to satisfy (iii), then 265 = 2b 6 hence b5 = b6 (since G has no 2-torsion) which 

is a contradiction. Hence, without  loss o f  generality we may select r a = b5. 

Thus R = {rl, r2,r3} is not  in arithmetic progression on the right. This com- 

pletes the proof.  

LEMMA 1.2. Let G be a group (possibly not Abelian) with no 2-torsion. Let t be 

a positive integer and let Gt be the set o f  sums of t distinct elements of  G. I f  

t < [ G ] ,  then Gt = G. 

PROOF. Let g t  # 0  be an arbitrary element o f  G. Since no element o f  G is its 

own inverse, the elements o f  G may be listed as follows: 

I f  = 2s + 1, then 

O, g l ,  - g l ,  g2, - g 2 , " "  

= g l  + ( g 2 - g : )  + "- + ( g , - g , ) .  

Consequently,  g~ is a sum of  t distinct elements o f  G,  and similarly 

0 = 0 + (g2 -g2 )  + "'" + ( g , - a , ) .  

I f  t = 2s, then 

and 

g l  = g l  + 0 + (g2--g2)  + "'" + (g~--g~) 

0 = ( g l - g O  + . . .  + ( g , - g , )  

Therefore,  G t = G. 
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REMARK. Lemma 1.2 is false for G with 2-torsion. For example, if G is the 

elementary Abelian 2-group of order 2 n, then I G21 < I GI �9 However, as noted 

in the introduction, the author proved [B2 ] >= ]nl  iff n x + N where N is 

the elementary Abelian 2-group. 

LEMMA 1.3. Let  G be either a torsion-free Abel ian  group or a cyclic 9roup 

of  pr ime  order p .  Let  B a f in i te  subset o f  G and let t be a positive integer 

l_-<t<lBI Then IB, 
PROOF. Since B is a finite subset of G, we may assume that G is finitely gene- 

rated. We proceed by induction on t. For t = 1 the statement is true. Assume 

t > 1 and that the statement is true for all t' < t. Set l B [ = k and let B = {bl,...,bk}. 

By Lemma 1.2, we may assume that B is aperiodic. We shall prove that the state- 

ment is true for t = 2. 

If  G is cyclic of prime order, we may take bl = 0 ,  b2 = 1 and 

0 < 1 < b 3 < ... < b k using the ordering inherited from Z (the integers). Then 

0 + 1 , . . . , 0  + bk are distinct, and 1 + bk is distinct from 1,...,  bk because either 

l + b k  = 0  or b k < l + b  k. Hence IB21 > IBI. 

If G is free, we use a similar argument using the lexiographical ordering in- 

herited from Z,  since G is a direct sum of copies of Z.  

Therefore, we may assume t > 3 .  Now IBk-,I----I~,l because 

b~ + ... + bk -- Bt c_ Bk_t and b~ + ... + bk -- B(k-t) c Bt" Hence, if k + t < t 

we are done by induction. Thus we may assume k > 2t, so k > 6, and by 

Lemma 1.1 we can find a subset R of three elements of B which is not arithmetic 

progression. Let B * =  B \ R ,  then [B*I= k - 3 .  Now t - 1  < k - 3 ,  so by 

induction 

IB*-,I->_ IB*I = k - 3 .  

If  B*_ 1 + R is periodic, we are done; hence, we may assume that Bt-~ + R is 

aperiodic. Note that if ]B,*_~+ R] = p - 1  (for G = Z,) we are again done 

because we may assume that ] B ] < p by Lemma 1.2. Thus by Kneser's theorem: 

Is*_, + R 1 >__ Ia*,_,l + IRI- 1. 

If  equality holds, then by Kemperman's structure theorem (B*-I, R) must be an 

elementary pair because (i) for G torsion free, G contains no nontrivial finit 
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subgroups, and (ii) for G = Zp and the previous discussion, we may assume that 

I B*_I + R I __< p - 2 .  But !B*_11 > 1, I R[ > 1, and R is not arithmetic progres- 

sion. This is a contradiction, i.e., * (Bt-1, R) cannot be an elementary pair, there- 

fore, we must have 

I B,*-I + RI > I B~*-I i + IRI- 1 

> = ( k - 3 ) + 3  = k. 

Since Bt*l  + R __q B,, we have proved I B, I >_ IBI. 

2. Preliminaries for the Proof of Theorem 1 

We introduce the following notation. Let G be an Abelian group with no 

2-torsion and let H be a finite nontrivial subgroup of G. Let B be a finite subset 

of G of size k = I BI . Let a: G ~ G/H denote the canonical homomorphism 

from G to the factor group G/H.  We write B(modH)  to denote Ba; moreover, 

we put X = B(modH) where X = {X l , ' " ,Xm} ,  and thus Isl-= m. Next, we 

define the following sets: 

A~ = B r3 (x~ + H) ,  1 < i <_ m 

and we put ks = ]A~]. 

We arrange the notation so that 

k 1 > k 2 > . . .  > k m > 1 ~ ~ ~ �9 

Note that ~ k  s =  k. 

Without loss of generality we may assume that G is f ini te ly  generated because 

for K a finite subgroup of G, we may consider G* = (B, K )  the group generated 

by B U K .  Hence G = F q) T where F is the free part and Tis  the torsion part. 

Note that T is finite. 

In the proof  of Propositions 1.4, 1.5, 1.6, and Theorem 1, we proceed by 

double induction on t and the order of T. For t = 1, Theorem 1 is true, and 

for T = {0} the theorem is true by Lemma 1.3. Consequently, we may assume 

that t > 1 and IT[ > 2, and we make the inductive assumption that: 

i) Theorem 1 is true for all orders [T'I  ____ ITI when t' < t  and 

ii) Theorem 1 is true for all orders ] T'[  < ] T I when t' = t .  
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PROPOSITION 1.4. Let H be a nontrivial finite subgroup of G. Then 

] B,(mod H)] _> ] B(mod H)[.  

PROOF. Case I. kl = k2 . . . . .  km = 1. 

In this case each element of B is in one and only one H-coset, therefore 

I s l  = IBI = k -- m and X, = B,(modH). However, by the inductive assump- 

tion on T, Theorem 1 holds in G/H, consequently Ix, I lxl, and thus 

] B,(mod H)] > ] B(mod n ) ] .  

Case II. k 1 > 2. 

Choose an element r from At = (xt + H ) N  B and consider the set B' = Bl{r}. 

Since k > t, we have k - 1 > t - 1. Furthermore, by the inductive assumption 

o n  t 

] B:_ ,(mod H)] > I B'(mod H)] .  

But [B'(modH)] = ] B ( m o d H ) l  and r + B ; _ ,  c_Bt so (r+B~_t)(modH) 

Bt(mod H). Thus ] B/(mod H)] > ] B:_,(mod H)[ _>_ ] B(mod H)[.  

This completes the proof. 

PROPOSmON 1.5. Let H be a cyclic subgroup of G of order p (p prime and 

p > 2). Recall that m = IX[ where X = B(mod H ) . I f  t < m, then I ,l I B I. 

PROOF. We consider sums of t elements over distinct elements of X in G/H, 

then by the inductive assumption on the order of T, we have IX, ] > I x l  = m. 

Define the set X ' =  X \ {x~ )  then t - l < m - I ,  and by induction [X;_t]  

I I > X'  = m -  1. Since x t + Xt-1 G Xt, it follows that at least m -  1 sums 

in Xr must contain x t .  Therefore, the corresponding set in G 

s = O (a,,.. + . . .  + A,) 
XiI+'" + ~ r  E X / 

is a subset of Bt which contains at least ( m - 1 ) k  1 + kj ( j  _> 1) elements. Thus 

IS I _ - > ( m - 1 ) k l + k  i ,  but ( m - 1 ) k t + k  i>= ] ~ k , = k  because kl ~ k 2 > = - ' -  

=> km => 1. Thus ]BI] => IB.I 

PROPOSITION 1.6. Let H and m be defined as in Proposition 1.5. Assume 

kt > 3 ,  m>__2, and k - m > = t .  Then la ,  I ~ IBI 

PRoof. Let n be the largest index i, 1 _< i <  m, such that k ~ 2 .  Thus 
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k 1 => k 2 => "-" => k, => 2 and k,+ ~ . . . . .  k,, = 1 . Now one can easily verify 

that the conditions k~ > 3, m > 2, and k - m > t imply that there exist positive 

integers h , ' " ,  t, satisfying the conditions: 

i) t l + . . . + t . =  t - 1  

ii) 1 < t 1 < k 1 - 1  

iii) 1 < t  i < k J  for 2 < j _ 5 _ n ,  if n > 2 .  

Assume n > 1 and consider the set X '  = t~xx + ... + tnX n + X in the factor 

group G/H.  Note that Ix '  I = Ix l  = m. Define the following sets Sj for 

l < = j < m  by: 

S i = (A1),1 + " "  + (Aj)tj+ t + " "  + (A,)t., for 1 < j < n. 

Sj = (A~)t, + "" + (Aj)tj + "'" + (A,), .  + A j ,  for n < j  < m.  

Thus Sj ~_ t lx  I + ... + t ,x,  + xj + H for 1 < j < m; furthermore, since 

tl < t -  1 (because n > 1) we have by the induction assumption I(A1)tll > IA11 

= ka. Therefore {Sj} is a collection of m disjoint sets, each a subset of  Bt and 

each containing at least kt elements, so I U S j l >  rnkl ,  hence I B, I >-- 
I f  n = 1, then tx = t - 1  and k2 . . . . .  k,, = 1. For m > 3, we consider 

( (AOt-1  + A2) u ... • ((A~)t-~ + A,,) which consists of k t ( m - 1 )  elements, but 

k : ( m - 1 )  ~ kt + ( m - 1 ) .  Therefore ]B,] >_ ]B] .  For  m = 2, we observe that 

] (Ax)t ] > kl by Lemma 1.3. Thus ((A1) t_ 1 + A2) U (A1)t consists of  2kl elements, 

so ]/3,1 > I B] .  This concludes the proof. 

3. Proof of Theorem 1 

We carry out the induction on t and T as explained before. We know that T 

contains a cyclic subgroup H of  order p (p a prime). We first show ]Bt [ > I BI. 

Since IBk-,I = IB, I <cf. proof of Lemma 1.3) we may assume that k > 2t. 

Recall our notation X = {xl , . . . ,x , ,} .  I f  m = 1, then Lemma 1.3 implies that 

1 B,I >-- I BI, so we may assume that m > 2. By Proposition 1.5 we may assume 

that t > m.  However, k > 2t and t > m imply that k -  m > t.  I f  kx > 3, 

then Proposition 1.6 gives IB, I _-_ IBI. Therefore we may assume that m > 2, 

t >_ m,  k - m >  t, k > 2 t ,  and k t = 2 .  These conditions imply that m > 2 ,  

kl = k2 . . . . .  k,, = 2, and t = m.  For  m > 3 define the sets Sj (1 < j  < m) 

by 
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$1 = A I + ' " + A m  

$2 = (A1)2 + A3 + "" + Am, (A2 not included) 

Sj = (AI)2 + A2 + "'" + Am, (Aj not included) 

Sm= (A1)2 + A2 + "'" + Am-l,  (Am not included). 

Then each Sj _ x~ + x 2 + ... + Xm + xt - xj + H ,  so {Sj} is a collection of 

m disjoint sets each a subset of Bt and each consisting of at least two elements. 

So Ius l z 2m, and thus IB, I >--Inl. 
For m = 2 we have [(A1 + A2)u(A1)2[ > 4, so IB, I IBI. 
Next let K be any subgroup of T. Then Proposition 1.4 implies that 

I B,(mod K)] ____ I B(mod K) I . This completes the induction and proves the theo- 

rem for the case that G is finitely generated. 

For the general case, let B be a finite subset of G, let K be a finite subgroup 

of G, and let G* = ( B , K )  denote the group generated by B U K .  Since G* 

is finitely generated, we have 

[ B,(mod K)] > ] B(mod K)[ .  

This completes the proof of the theorem. 

COROLLARY. Assuming that the hypothesis of Theorem 1 is true, IB, I----IBI 
PROOF. Take K = {0} in the theorem. 

COROLLARY. Let G be an Abelian group with no2-torsion, let B be a finite 

subset of G, let K be a subgroup of G such that G/K has no 2-torsion, and let 

t be a positive integer such that t < I nl. Then, 

I Bt(m~ K) I > I B(mod K) I. 

PROOF. The proof follows by induction on t ,  Theorem 1, and the same proof 

given in Proposition 1.4. 

REMARK. The problem for G with 2-torsion is a bit more involved; however, 

we expect a solution cart be worked out using the methods developed in the 

theorem and a greater dependence on Kemperman's structure theorem. 
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